82 research outputs found

    Open k-monopolies in graphs: complexity and related concepts

    Get PDF
    Closed monopolies in graphs have a quite long range of applications in several problems related to overcoming failures, since they frequently have some common approaches around the notion of majorities, for instance to consensus problems, diagnosis problems or voting systems. We introduce here open kk-monopolies in graphs which are closely related to different parameters in graphs. Given a graph G=(V,E)G=(V,E) and X⊆VX\subseteq V, if δX(v)\delta_X(v) is the number of neighbors vv has in XX, kk is an integer and tt is a positive integer, then we establish in this article a connection between the following three concepts: - Given a nonempty set M⊆VM\subseteq V a vertex vv of GG is said to be kk-controlled by MM if δM(v)≥δV(v)2+k\delta_M(v)\ge \frac{\delta_V(v)}{2}+k. The set MM is called an open kk-monopoly for GG if it kk-controls every vertex vv of GG. - A function f:V→{−1,1}f: V\rightarrow \{-1,1\} is called a signed total tt-dominating function for GG if f(N(v))=∑v∈N(v)f(v)≥tf(N(v))=\sum_{v\in N(v)}f(v)\geq t for all v∈Vv\in V. - A nonempty set S⊆VS\subseteq V is a global (defensive and offensive) kk-alliance in GG if δS(v)≥δV−S(v)+k\delta_S(v)\ge \delta_{V-S}(v)+k holds for every v∈Vv\in V. In this article we prove that the problem of computing the minimum cardinality of an open 00-monopoly in a graph is NP-complete even restricted to bipartite or chordal graphs. In addition we present some general bounds for the minimum cardinality of open kk-monopolies and we derive some exact values.Comment: 18 pages, Discrete Mathematics & Theoretical Computer Science (2016

    Global offensive kk-alliances in digraphs

    Full text link
    In this paper, we initiate the study of global offensive kk-alliances in digraphs. Given a digraph D=(V(D),A(D))D=(V(D),A(D)), a global offensive kk-alliance in a digraph DD is a subset S⊆V(D)S\subseteq V(D) such that every vertex outside of SS has at least one in-neighbor from SS and also at least kk more in-neighbors from SS than from outside of SS, by assuming kk is an integer lying between two minus the maximum in-degree of DD and the maximum in-degree of DD. The global offensive kk-alliance number γko(D)\gamma_{k}^{o}(D) is the minimum cardinality among all global offensive kk-alliances in DD. In this article we begin the study of the global offensive kk-alliance number of digraphs. For instance, we prove that finding the global offensive kk-alliance number of digraphs DD is an NP-hard problem for any value k∈{2−Δ−(D),…,Δ−(D)}k\in \{2-\Delta^-(D),\dots,\Delta^-(D)\} and that it remains NP-complete even when restricted to bipartite digraphs when we consider the non-negative values of kk given in the interval above. Based on these facts, lower bounds on γko(D)\gamma_{k}^{o}(D) with characterizations of all digraphs attaining the bounds are given in this work. We also bound this parameter for bipartite digraphs from above. For the particular case k=1k=1, an immediate result from the definition shows that γ(D)≤γ1o(D)\gamma(D)\leq \gamma_{1}^{o}(D) for all digraphs DD, in which γ(D)\gamma(D) stands for the domination number of DD. We show that these two digraph parameters are the same for some infinite families of digraphs like rooted trees and contrafunctional digraphs. Moreover, we show that the difference between γ1o(D)\gamma_{1}^{o}(D) and γ(D)\gamma(D) can be arbitrary large for directed trees and connected functional digraphs

    General dd-position sets

    Get PDF
    The general dd-position number gpd(G){\rm gp}_d(G) of a graph GG is the cardinality of a largest set SS for which no three distinct vertices from SS lie on a common geodesic of length at most dd. This new graph parameter generalizes the well studied general position number. We first give some results concerning the monotonic behavior of gpd(G){\rm gp}_d(G) with respect to the suitable values of dd. We show that the decision problem concerning finding gpd(G){\rm gp}_d(G) is NP-complete for any value of dd. The value of gpd(G){\rm gp}_d(G) when GG is a path or a cycle is computed and a structural characterization of general dd-position sets is shown. Moreover, we present some relationships with other topics including strong resolving graphs and dissociation sets. We finish our exposition by proving that gpd(G){\rm gp}_d(G) is infinite whenever GG is an infinite graph and dd is a finite integer.Comment: 16 page
    • …
    corecore